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In this paper, the bifurcations and chaotic motions of higher-dimensional nonlinear

systems are investigated for the nonplanar nonlinear vibrations of an axially

accelerating moving viscoelastic beam. The Kelvin viscoelastic model is chosen to

describe the viscoelastic property of the beam material. Firstly, the nonlinear governing

established by using the generalized Hamilton’s principle for the first time. Then, based

on the Galerkin’s discretization, the governing equations of nonplanar motion are

simplified to a six-degree-of-freedom nonlinear system and a three-degree-of-freedom

nonlinear system with parametric excitation, respectively. At last, numerical simula-

tions, including the Poincare map, phase portrait and Lyapunov exponents are used to

analyze the complex nonlinear dynamic behaviors of the axially accelerating moving

viscoelastic beam. The bifurcation diagrams for the in-plane and out-of-plane

displacements via the mean axial velocity, the amplitude of velocity fluctuation and

the frequency of velocity fluctuation are respectively presented when other parameters

are fixed. The Lyapunov exponents are calculated to identify the existence of the chaotic

motions. From the numerical results, it is indicated that the periodic, quasi-periodic and

chaotic motions occur for the nonplanar nonlinear vibrations of the axially accelerating

moving viscoelastic beam. Observing the in-plane nonlinear vibrations of the axially

accelerating moving viscoelastic beam from the numerical results, it is found that the

nonlinear responses of the six-degree-of-freedom nonlinear system are much different

from that of the three-degree-of-freedom nonlinear system when all parameters are

same.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving beams can represent many engineering devices, such as band saws and serpentine belts, and have been
widely utilized to transmit power and motion. With the development of engineering materials, axially moving beams are
usually composed of some metallic or reinforcement materials like glass-cord and polymeric materials which have long-
chain molecules and viscoelastic behavior, for example, rubber. The modeling of dissipative mechanisms also is an
important research topic in the nonlinear vibrations of axially moving viscoelastic materials. The theory of viscoelasticity is
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an effective approach to model the dissipative mechanism in the nonlinear vibrations of axially moving viscoelastic
materials. To accurately describe the material property of axially moving viscoelastic beams, viscoelastic constitutive
relations such as the differential or integral constitutive relations must be employed. Axially moving acceleration often
appears in axially moving viscoelastic beams. For example, using an axially moving beam models a belt on a pair of
rotating pulleys, the rotation vibration of the pulleys will result in a small fluctuation in the axial speed of the belt.
The nonlinear dynamical characteristics of axially accelerating moving viscoelastic beams have significant influence on
the stability and reliability of mechanical systems. The transverse nonlinear oscillations of axially accelerating
moving viscoelastic beams occupy main aspects of the nonlinear dynamical characteristics. The influence of the periodic
fluctuation of the rotating speed and the torsional vibration of the pulleys on the transverse nonlinear oscillations of
axially accelerating moving viscoelastic beams should be taken into account. Therefore, the investigation on the transverse
nonlinear vibrations of axially accelerating moving viscoelastic beams is a challenging subject and is still of interest
today.

Considerable attention has been paid to research works on the nonlinear dynamics of axially moving beams or strings
by many investigators in the past forty years. With the constant mean axial transport velocity, the dynamic responses of
axially moving beams have been studied extensively. For axially accelerating moving beams, Pakdemirli et al. [1]
investigated the dynamic stability for transverse vibration of an axially accelerating string based on the Galerkin
truncation. Pellicano and Zirilli [2] analyzed the boundary layers and nonlinear vibrations of an axially moving beam with
vanishing, flexural stiffness and weak nonlinearities. Pakdemirli and Ulsoy [3] applied the discretization-perturbation
method and the direct-perturbation method for analyzing the stability of an axially accelerating string. Oz et al. [4]
employed the method of multiple scales to study the dynamic stability and nonlinear responses of an axially accelerating
beam with small bending stiffness. Using the one-term Galerkin discretization, Ravindra and Zhu [5] analyzed the chaotic
behaviors of axially accelerating beams. Özkaya and Pakdemirli [6] utilized the method of multiple scales and the method
of matched asymptotic expansions to construct non-resonant boundary layer solutions of an axially accelerating beam
with small bending stiffness. Oz and Pakdemirli [7] and Oz [8] used the method of multiple scales to analytically calculate
the stability boundaries of an axially accelerating beam under simply supported conditions and fixed–fixed conditions,
respectively. Parker and Lin [9] adopted the one-term Galerkin discretization and the perturbation method to study the
dynamic stability of an axially accelerating moving beam subjected to a tension fluctuation. Oz et al. [10] employed the
method of multiple scales to determine the steady-state transverse nonlinear responses and their stability of axially
accelerating moving beams. Ozkaya and Oz [11] applied artificial neural network algorithm for analyzing the stability of an
axially accelerating beam.

Throughout the history of research, all above-mentioned researchers assumed axially accelerating moving strings or
beams under their consideration to be elastic and did not take into account any dissipative mechanisms for axially
accelerating moving materials. Nevertheless, the modeling of dissipative mechanisms is an important research topic
for the nonlinear vibrations of axially accelerating moving materials. The nonlinear parametric vibrations of axially
moving viscoelastic strings have been investigated by several researchers. Using the three-term Galerkin discretization,
Marynowski [12] and Marynowski and Kapitaniak [13] gave a comparison among the Kelvin model, the Maxwell model
and the Bugers model. They used numerical method to simulate the nonlinear responses of an axially moving beam
excited by a changing tension and found that all models yield similar results in the case of small damping. Marynowski
[14] further numerically studied the nonlinear dynamical behaviors of an axially moving viscoelastic beam with
time-dependent tension using the four-term Galerkin discretization. However, the literatures related to axially
accelerating moving viscoelastic beams are relatively limited. Based on the second-term Galerkin discretization,
Chen et al. [15] analyzed the stability of axially accelerating linear beams. Yang and Chen [16,17] studied the steady-state
nonlinear responses, bifurcations and chaos of an axially accelerating moving viscoelastic beam. Although several
research works on the relevant topic in the field have been carried out in recent years, effort in analyzing the nonplanar
nonlinear transverse vibrations of axially accelerating moving viscoelastic beams is lacking. This situation necessitates
the need for the study presented in this paper. Through the observation of our experimental results, it is found
that the nonlinear vibrations of axially accelerating moving viscoelastic beams are not located in the in-plane.
Mockensturm and Guo [18] utilized the material time derivative in the viscoelastic constitutive relation to analyze the
nonlinear dynamic responses of parametrically excited, axially moving viscoelastic belts and gave a comparison to
previous work.

Recently, Chen et al. [19] established the governing equations of motion for the nonplanar nonlinear vibrations of an
axially moving viscoelastic belt by using the generalized Hamilton’s principle for the first time. The problem for using the
generalized Hamilton’s principle to establish the governing equations of motion for the nonplanar nonlinear vibrations of
an axially moving viscoelastic belt was solved. Based on the results mentioned above, Liu et al. [20] investigated the
periodic and chaotic oscillations of an axially moving viscoelastic belt with one-to-one internal resonance in three-
dimensional space. Zhang and Song [21] studied higher-dimensional periodic and chaotic oscillations for a parametrically
excited viscoelastic moving belt with multiple internal resonances. Marynowski and Kapitaniak [22] investigated the
modeling and nonlinear responses of an axially moving viscoelastic beam with time-dependent tension and Zener internal
damping. Chen et al. [23] gave a survey on the advances in the nonlinear dynamics of transverse motion of axially moving
strings belts. Gao et al. [24] modified the higher-dimensional Melnikov method to investigate the single-pulse homoclinic
orbits and chaotic dynamics for the six-dimensional nonlinear system for an axially moving viscoelastic belt. Chen and
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Ding [25] analyzed the steady-state transverse responses in coupled planar nonlinear vibrations of an axially moving
viscoelastic beam.

This paper investigates the complex dynamic behaviors for the nonplanar nonlinear transverse vibrations of an axially
accelerating moving viscoelastic beam. In Section 2, the governing equations of motion for the nonplanar nonlinear
vibrations of the axially accelerating moving viscoelastic beam are established by using the generalized Hamilton’s
principle for the first time. The governing equations of motion, which are changed to a set of ordinary differential
governing equations with three-degree-of-freedom and six-degree-of-freedom, are obtained in Section 3. Section 4
describes investigation of the nonlinear dynamical behaviors of the axially accelerating moving viscoelastic beam in a
general way, including the bifurcation diagrams, the largest Lyapunov exponents, Poincare maps and phase portraits.
Finally, the results and conclusions are given.
2. Formula of axially accelerating moving viscoelastic beam

When the bending stiffness of an axially accelerating moving viscoelastic belt cannot be neglected, we use an
axially accelerating moving viscoelastic beam to model the belt driving device, as shown in Fig. 1. Therefore, the

governing equations of motion for the nonlinear vibrations of the axially accelerating moving viscoelastic belt are based
on an axially moving beam model. In the axially accelerating moving viscoelastic beam, it is indicated that A is cross-
sectional area of the beam, L is free length of the beam between two supports, r is the mass density of the beam and c(t) is
the axial velocity of the beam. A Cartesian coordinate system, Oxyz, is adopted. Another coordinate system is a moving
coordinate fixed on the beam. The u, v and w are the displacements with respect to moving coordinate in the x, y

and z directions, respectively. It is assumed that the tension P is characterized as a small periodic perturbation P1 cosot on
the steady-state tension P0, namely, P¼ P0þP1cosot. It is also assumed that the moving speed of the beam is characterized
as a simple harmonic change about the constant mean speed, namely, cðtÞ ¼ c0þc1cosot. This assumption has its physical
meaning. For example, if we use the axially moving beam to model a belt on a pair of rotating pulleys, the rotation
vibration of the pulleys will result in a small fluctuation in the axial velocity of the belt.

The displacement components of any point (x,y,z) in the axially accelerating moving viscoelastic beam are obtained as
follows:

uðx,tÞ ¼ u0ðx,tÞþz
@w

@x
þy

@v

@x
, (1a)

wðx,tÞ ¼w0ðx,tÞ, (1b)

vðx,tÞ ¼ v0ðx,tÞ, (1c)

where u0, v0 and w0 are the displacement components in the x, y and z directions on the axial line of the axially accelerating
moving beam.

In this paper, the Lagrangian strain for the beam is employed as a finite measure of the strain. The geometric
nonlinearity depending on finite stretching is considered through the Lagrangian strain. The axial Lagrangian strain of the
axially accelerating moving beam is given by

ex ¼
@u

@x
þ

1

2

@v

@x

� �2

þ
1

2

@w

@x

� �2

: (2)

It is assumed that the viscoelastic material of the axially accelerating moving beam is homogeneous and satisfies the
Kelvin model. Therefore, the constitution relation is given as follows:

s¼ E0exþZ
@ex

@t
¼ seþsv, (3)

where Z is the dynamic viscous coefficient, se=E0e and sv=Z(qe/qt), respectively, represent the constant stress and the
time-varying stress.
y

x

P P
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L
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Fig. 1. The model of an axially moving viscoelastic beam is given.
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The axially moving velocity of the beam is represented by c(t) which is varying with respect to the time t. Then, the
absolute velocity of any point for the axially moving beam is given as follows:

dx

dt
¼ cþc

@u

@x
þ
@u

@t
, (4)

dy

dt
¼ c

@v

@x
þ
@v

@t
, (5)

dz

dt
¼ c

@w

@x
þ
@w

@t
: (6)

In 2007, Chen et al. [19] used the generalized Hamilton’s principle to establish the governing equations of motion
for the nonplanar nonlinear vibrations of the axially moving viscoelastic belt for the first time. In the following analysis,
the generalized Hamilton’s principle [19,26] will be used to obtain the nonlinear governing equations of motion
for the axially accelerating moving viscoelastic beam. The governing equation of motion in the context of the
Newtonian mechanics can be derived for the nonplanar nonlinear vibrations of the axially accelerating moving viscoelastic
beam. However, this derivation requires a free body diagram for a differential element of mass and the use of sign rule for
forces and moments. Therefore, it is considered that this derivation is not always easy. Using the generalized Hamilton’s
principle, we can avoid such problems. The mathematical statement of the generalized Hamilton’s principle is given as
follows:

Z t2

t1

ðdT�dUþdWÞdt¼ 0, (7)

where dT represents the variation of the kinetic energy, dU indicates the variation of the elastic strain energy or elastic
potential energy, and dW denotes the virtual work performed by both external and viscous dissipative forces.

From Eq. (3), we know that the variation of elastic potential energy is of the form

dU ¼

Z
V
sededV ¼

Z L

0

Z
A
sededAdx: (8)

The virtual work performed by both external forces and viscous dissipative damping for the axially accelerating moving
viscoelastic beam is represented as

dW ¼ dWextþdWvis ¼�

Z L

0

Z
A

PdedAdx�

Z L

0

Z
A
svAdedAdx, (9)

where svA is the viscous dissipative force corresponding to the time-varying stress or the past history stress at any position
(x,y,z) for the axially accelerating moving beam.

The kinetic energy of the axially accelerating moving viscoelastic beam is given as follows:

T ¼

Z L

0

1

2
rA _x2

þ _y2
þ _z2

h i
dx¼

Z L

0

1

2
rA ðcþcu,xþu,tÞ

2
þðcv,xþv,tÞ

2
þðcw,xþw,tÞ

2
h i

dx: (10)

For the expression’s convenience, we drop the subscript ‘0’, which denotes the displacement on the axial line of the
axially accelerating moving viscoelastic beam. The variation of the kinetic energy is obtained as follows:

dT ¼ d
Z L

0

1

2
rA ðcþcu,xþu,tÞ

2
þðcv,xþv,tÞ

2
þðcw,xþw,tÞ

2
h i

dx: (11)

We first derive the governing equations of three-dimensional nonlinear vibrations for the axially accelerating moving
viscoelastic beam. Substituting Eqs. (8), (9) and (11) into Eq. (7) yields

Z t2

t1

Z L

0

rA

2
d ðcþcu,xþu,tÞ

2
þðcv,xþv,tÞ

2
þðcw,xþw,tÞ

2
h i

dxdt�

Z t2

t1

Z L

0

Z
A
ðPdeþsedeþsvdeÞdxdt¼ 0: (12)

Using Eq. (3), then, Eq. (12) can be rewritten as
Z t2

t1

Z L

0

rA

2
d ðcþcu,xþu,tÞ

2
þðcv,xþv,tÞ

2
þðcw,xþw,tÞ

2
h i

dxdt�

Z t2

t1

Z L

0

Z
A
ðPdeþsdeÞdxdt¼ 0: (13)

It is assumed that the variation and differentiation are interchangeable. The boundary conditions with respect to time
are obtained as

duðx,t1Þ ¼ duðx,t2Þ ¼ 0, dvðx,t1Þ ¼ dvðx,t2Þ ¼ 0, dwðx,t1Þ ¼ dwðx,t2Þ ¼ 0: (14)

The boundary conditions with respect to displacement are denoted as

uð0,tÞ ¼ uðL,tÞ ¼ 0, vð0,tÞ ¼ vðL,tÞ ¼ 0, wð0,tÞ ¼wðL,tÞ ¼ 0, (15)

v,xxð0,tÞ ¼ v,xxðL,tÞ ¼ 0, w,xxð0,tÞ ¼w,xxðL,tÞ ¼ 0: (16)



L.H. Chen et al. / Journal of Sound and Vibration 329 (2010) 5321–5345 5325
The governing equations of three-dimensional nonlinear vibrations for the axially accelerating moving viscoelastic
beam are obtained in the following three equations:

rAðu,ttþ2cu,xtþc2u,xxþc,tu,xþc,tÞ�

Z
A
s,x dA¼ 0, 0oxoL, (17a)

rAðv,ttþ2cv,xtþc2v,xxþc,tv,xÞ�PAv,xx�

Z
A
½ðsv,xÞ,xþys,xx�dA¼ 0, 0oxoL, (17b)

rAðw,ttþ2cw,xtþc2w,xxþc,tw,xÞ�PAw,xx�

Z
A
½ðsw,xÞ,xþzs,xx�dA¼ 0, 0oxoL: (17c)

Eq. (17) is a general form of the governing equations of three-dimensional nonlinear vibrations for the axially
accelerating moving viscoelastic beam, which can be satisfied by both the differential and integral constitutive relations of
viscoelastic materials.

The inertia moments of a cross-sectional area for the axially accelerating moving viscoelastic beam are given as follows:

Jyz ¼

Z
A

yzdA, Jy ¼

Z
A

z2 dA, Jz ¼

Z
A

y2 dA: (18)

Using the Kelvin type viscoelastic constitutive law and substituting Eq. (3) into Eq. (17), we obtain the governing
equations of three-dimensional nonlinear vibrations for the axially accelerating moving viscoelastic beam as

rAðu,ttþ2cu,xtþc2u,xxþc,tu,xþc,tÞ ¼ E0Aðu,xxþv,xv,xxþw,xw,xxÞþZAðu,xxtþv,xtv,xxþv,xv,xxtþw,xtw,xxþw,xw,xxtÞ, (19a)

rAðv,ttþ2cv,xtþc2v,xxþc,tv,xÞþ JzðE0v,xxxxþZv,xxxxtÞþ JyzðE0w,xxxxþZw,xxxxtÞ

¼ PAv,xxþE0A v,xu,xxþ
3

2
v,2

x v,xxþv,xw,xw,xxþv,xxu,xþ
1

2
w,2x v,xx

� �

þZAðv,xu,xxtþ2v,xv,xtv,xxþv,2
x v,xxtþv,xw,xtw,xxþv,xw,xw,xxtþv,xxu,xtþv,xxw,xtw,xÞ, (19b)

rAðw,ttþ2cw,xtþc2w,xxþc,tw,xÞþ JyðE0w,xxxxþZw,xxxxtÞþ JyzðE0v,xxxxþZv,xxxxtÞ

¼ PAw,xxþE0A w,xu,xxþw,xv,xv,xxþ
3

2
w,2

x w,xxþw,xxu,xþ
1

2
v,2

x w,xx

� �

þZAðw,xu,xxtþw,xv,xtv,xxþw,xv,xv,xxtþ2w,xw,xtw,xxþw,2x w,xxtþw,xxu,xtþv,xv,xtw,xxÞ: (19c)

Eqs. (19a)–(19c) respectively describe the longitudinal vibration, the in-plane and the out-of-plane transverse nonlinear
vibrations of the axially accelerating moving viscoelastic beam with the Kelvin type viscoelastic constitutive law.

Generally, the transverse nonlinear vibrations are primary motions of the axially accelerating moving viscoelastic beam.
Therefore, the longitudinal vibration can be ignored in some studies. The governing equations of the nonplanar nonlinear
transverse vibrations, including the in-plane and out-of-plane nonlinear vibrations, are given by

rAðv,ttþ2cv,xtþc2v,xxþc,tv,xÞþ JzðE0v,xxxxþZv,xxxxtÞþ JyzðE0w,xxxxþZw,xxxxtÞ

¼ PAv,xxþE0A
3

2
v,2x v,xxþv,xw,xw,xxþ

1

2
w,2x v,xx

� �

þZAð2v,xv,xtv,xxþv,2x v,xxtþv,xw,xtw,xxþv,xw,xw,xxtþv,xxw,xtw,xÞ, (20a)

rAðw,ttþ2cw,xtþc2w,xxþc,tw,xÞþ JyðE0w,xxxxþZw,xxxxtÞþ JyzðE0v,xxxxþZv,xxxxtÞ

¼ PAw,xxþE0A w,xv,xv,xxþ
3

2
w,2

x w,xxþ
1

2
v,2x w,xx

� �

þZAðw,xv,xtv,xxþw,xv,xv,xxtþ2w,xw,xtw,xxþw,2
x w,xxtþv,xv,xtw,xxÞ: (20b)

In order to compare the nonplanar nonlinear transverse vibrations with the in-plane nonlinear transverse vibrations,
the governing equation of the in-plane nonlinear transverse vibrations for the axially accelerating moving viscoelastic
beam is given by

rAðv,ttþ2cv,xtþc2v,xxþc,tv,xÞþ JyðE0v,xxxxþZv,xxxxtÞ ¼ PAv,xxþ
3

2
E0Av,2

x v,xxþZAð2v,xv,xtv,xxþv,2
x v,xxtÞ: (21)

3. Galerkin discretization

Using the three-term Galerkin discretization, the nonplanar transverse displacements v and w can be expressed as
follows [15]:

v¼ sin
px

l
q1ðtÞþsin

2px

l
q2ðtÞþsin

3px

l
q3ðtÞ, (22a)
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w¼ sin
px

l
q4ðtÞþsin

2px

l
q5ðtÞþsin

3px

l
q6ðtÞ: (22b)

Then, substituting Eq. (22) into Eq. (20) and applying the Galerkin approach to system (20), we obtain the following
nonlinear ordinary differential governing equations of motion for the axially accelerating moving viscoelastic beam with
six-degrees-of-freedom

€q1þ
p4JyZ
rAl4

_q1þ
p2

rAl2
p2JyE0

l2
�rAc2þP0þP1cosot

� �
q1þ

8

3l
c1osinotq2

�
16

3l
ðc0þc1cosotÞ _q2þ

p4Jyz

rAl4
ðE0q4þZ _q4Þþ

p4E0

rl4
3

8
q3

1þ
9

8
q2

1q3þ3q2
2q1þ

27

4
q2

3q1

�

þ
3

8
q2

4q1þ
3

4
q1q4q6þq2

5q1þ
9

4
q2

6q1þ
9

2
q2

2q3þ2q2q4q5þ3q2q6q5þ
3

8
q2

4q3þ
9

2
q3q4q6þ

3

2
q2

5q3

�

þ
2p4Z
rl4

3

8
q2

1
_q3þ

3

8
q2

1
_q1þ2q1q2 _q2þ

9

2
_q3q3q1þ

3

4
_q1q3q1þ

3

8
q1q4 _q4þ

3

8
q1q4 _q6

�

þq1q5 _q5þ
3

8
q1q6 _q4þ

9

4
q1q6 _q6þ

3

2
q2

2
_q3þq2

2
_q1þ3 _q2q2q3þq2q4 _q5þ

3

2
q2q5 _q6

þq2q5 _q4þ
3

2
q2q6 _q5þ

3

2
q2

3
_q1þ

9

4
_q6q4q3þ

3

8
q3q4 _q4þ

9

4
q3q6 _q4þ

3

2
q3q5 _q5

�
¼ 0, (23a)

€q2þ
16p4JyZ
rAl4

_q2þ
2p2

rAl2
8p2JyE0

l2
�2rAc2þ2ðP0þP1cosotÞ

� �
q2�

8

3l
c1osinotq1

þ
16

3l
ðc0þc1cosotÞ _q1þ

24

5l
oc1sinotq3�

48

5l
ðc0þc1cosotÞ _q3þ

16p4Jyz

rAl4
ðE0q5þZ _q5Þ

þ
2p4E0

rl4
3

2
q2

1q2þ
9

2
q1q2q3þq1q4q5þ

3

2
q1q5q6þ3q3

2þ
27

2
q2

3q2þ
1

2
q2

4q2þ
3

2
q2q4q6

�

þ3q2q2
5þ

9

2
q2q2

6þ
3

2
q3q4q5þ9q3q5q6

�
þ

2p4Z
rl4
ðq2

1
_q2þ2q1q2 _q1þ3q1q2 _q3þ3 _q2q3q1

þ _q5q4q1þq1q5 _q4þ
3

2
q1q5 _q6þ3q2q3 _q1þ18q2q3 _q3þq2q4 _q4þ

3

2
q2q4 _q6þ6q2q5 _q5

þ
3

2
_q4q2q6þ9q2q5 _q5þ

3

2
q1q6 _q5þ9q2

3
_q2þ

3

2
_q5q4q3þ

3

2
q3q5 _q4

þ9q3q6 _q5þ9q3q5 _q6Þ ¼ 0, (23b)

€q3þ
81p4JyZ
rAl4

_q3þ
p2

rAl2
81p2JyE0

l2
�9rAc2þ9ðP0þP1cosotÞ

� �
q3�

24

5l
oc1 sinotq2

þ
48

5l
ðc0þc1cosotÞ _q2þ
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System (23) can be used to describe the in-plane and out-of-plane nonlinear vibrations of the axially accelerating
moving viscoelastic beam simultaneously.

For the in-plane nonlinear vibrations, substituting Eq. (22a) into Eq. (21), we obtain the following nonlinear governing
equations of motion for the axially accelerating moving viscoelastic beam with three-degrees-of-freedom:
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System (24) can be utilized to describe the in-plane nonlinear vibrations of the axially accelerating moving viscoelastic beam.
4. Numerical simulations

In the present numerical investigation, a straight polymeric beam, namely Jyz= Jzy=0, is considered with length L=1.0 m,
width b=0.016 m, density r=1000 kg/m3, Young’s modulus along the axial direction E¼ 1:5� 108 N=m2, viscoelastic
coefficient Z¼ 4:0� 105 Ns=m2, and initial tension P¼ 100 N. The displacement and the velocity on the midpoint
of the axially accelerating moving viscoelastic beam, namely x=0.5 m, can be numerically obtained from Eqs. (23) or (24).
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The complex dynamic responses of six-degrees-of-freedom nonlinear system, namely Eq. (23), are firstly
investigated.

4.1. Case of beam with square or circular cross-sectional area

It is first considered that the beam is of the square or circular cross-sectional area. In this case, two flexural stiffness
coefficients of the in-plane and out-of-plane are same, such as Jy= Jz. For the different parameters and initial conditions, the
complicated nonlinear phenomena are observed from the numerical results. Fig. 2 illustrates that the in-plane motion of
the axially accelerating moving viscoelastic beam, with square cross-sectional area 0.01 m�0.01 m, is same as that of the
out-of-plane when the motions of the system are the nonlinear periodic vibrations, where v represents the in-plane motion
and w denotes the out-of-plane motion. This means that in this case, the phase angle of the in-plane motion is also same as
that of the out-of-plane motion. It is seen from Fig. 2(e) that the ratio of the amplitude for the in-plane motion to the
amplitude for the out-of-plane motion is a constant, which means the trajectory of motion of any point on the axially
accelerating moving viscoelastic beam is a line and the beam oscillates in a plane.

If the motions of the axially accelerating moving viscoelastic beam are the quasi-periodic or chaotic vibrations, the
amplitude of the in-plane motion is same as that of the out-of-plane motion, but the phase angle of the in-plane motion is
different from that of the out-of-plane motion, as shown in Fig. 3. In this case, it is observed from Fig. 3(e) that the
Fig. 2. The periodic motion of system (23) is depicted: (a) waveform of v, (b) phase portrait of v and _v , (c) waveform of w, (d) phase portrait of w and _w ,

and (e) trajectory of transverse motion for any point on the beam.



Fig. 3. The quasi-periodic response of system (23) is depicted: (a) waveform of v, (b) phase portrait of v and _v , (c) waveform of w, (d) phase portrait of w

and _w , and (e) trajectory of transverse motion for any point on the beam.

Fig. 4. The bifurcation diagrams for the two displacements v and w via the amplitude of the axial velocity fluctuation c1 are presented when c0 ¼ 30 m=s

and o=15: (a) bifurcation diagrams for the displacement w via c1 and (b) bifurcation diagrams for the displacement v via c1.
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Fig. 6. The bifurcation diagrams for the two displacements v and w via the amplitude of the axial velocity fluctuation c1 are presented when c0 ¼ 20m

and o=15: (a) bifurcation diagrams for the displacement w via c1 and (b) bifurcation diagrams for the displacement v via c1.

Fig. 5. The periodic-2 motion of system (23) is depicted: (a) waveform of v, (b) phase portrait of v and _v , (c) waveform of w, (d) phase portrait of w and _w

and (e) trajectory of transverse motion for any point on the beam.
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trajectory of the motion for any point on the axially accelerating moving viscoelastic beam is a curve, which means that the
beam’s motion is not located in a plane.

4.2. Case of beam with rectangular cross-sectional area

In the following analysis, we study the nonplanar nonlinear vibrations of the axially accelerating moving viscoelastic
beam with a rectangular cross-sectional area which is given by 0.01 m�0.02 m. In this case, the in-plane and out-of-plane
Fig. 7. The largest Lyapunov exponents via the c1 are calculated when c0 ¼ 30m=s.

Fig. 8. The periodic-2 response of system (23) is depicted when c1 ¼ 0:5m=s: (a) phase portrait and (b) Poincare map.

Fig. 9. The quasi-periodic motion of system (23) appears when c1 ¼ 0:68m=s: (a) phase portrait and (b) Poincare map.
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motions have great differences because two flexural stiffness coefficients are not equal. We analyze the effect of the mean
axial speed, the amplitude of the axial speed fluctuation and the frequency of the axial speed fluctuation on the nonlinear
dynamic behaviors of the axially accelerating moving viscoelastic beam, respectively. To give the bifurcation diagrams, we
will project the Poincare maps onto a plane which consists of the two displacements v and w. With variation of the mean
axial velocity c0, the amplitude c1 of the axial velocity fluctuation and the frequency o of the axial velocity fluctuation c1,
the three types of bifurcation diagrams are respectively presented.

4.2.1. Effect of amplitude of axial velocity fluctuation

Fig. 4 presents the bifurcation diagrams for the two displacements v and w via the amplitude of the axial velocity
fluctuation c1 when c0 ¼ 30 m=s and o=15 Hz. From the bifurcation diagrams, we can see that the nonplanar nonlinear
Fig. 11. The quasi-periodic motion of system (23) is depicted when c1 ¼ 1:6m=s: (a) phase portrait and (b) Poincare map.

Fig. 12. The periodic-2 motion of system (23) is depicted when c1 ¼ 1:7m=s: (a) phase portrait and (b) Poincare map.

Fig. 10. The chaotic motion of system (23) is depicted when c1 ¼ 1m=s: (a) phase portrait and (b) Poincare map.
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vibrations of the axially accelerating moving viscoelastic beam only are the periodic-2 motion, which means that there is
no bifurcation. Fig. 5 gives the phase portraits and waveforms of the periodic-2 motion. Comparing with the
aforementioned case in Section 4.1, it is observed that the trajectory of the transverse motion for any point on
the axially accelerating moving viscoelastic beam is not in a plane, as shown in Fig. 5(e). It is also seen that the motions of
the in-plane and out-plane are great different.

We change the mean axial velocity to c0 ¼ 20 m=s while other parameters are fixed. The bifurcation diagrams for the
two displacements v and w via the amplitude of the axial velocity fluctuation c1 are presented, as shown in Fig. 6. To
further confirm the nonlinear dynamic behaviors which we observe from the bifurcation diagrams given in Fig. 6, the
largest Lyapunov exponents are calculated for the nonplanar nonlinear vibrations of the axially accelerating moving
viscoelastic beam, as shown in Fig. 7. In order to illustrate in detail the bifurcation behaviors in a plane which consists
Fig. 14. The periodic-2 motion of system (23) exists when c1 ¼ 2:21m=s: (a) phase portrait and (b) Poincare map.

Fig. 15. The periodic response of system (23) is depicted when c1 ¼ 2:28m=s: (a) phase portrait and (b) Poincare map.

Fig. 13. The periodic-6 response of system (23) is obtained when c1 ¼ 1:74m=s: (a) phase portrait and (b) Poincare map.
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of the two displacements v and w, the Poincare maps and the phase portraits are respectively depicted, as shown in
Figs. 8–18. Qualitative explanation of the various bifurcation phenomena is given based on the observation obtained from
Figs. 6–18.

There is a window of the periodic-2 motion when the axial velocity fluctuation c1A[0.5 ,0.67]m/s. The corresponding
phase portrait and Poincare map are presented in Fig. 8. Fig. 9 gives a quasi-periodic motion of the axially accelerating
moving viscoelastic beam when c1=0.68 m/s. When we continuously increase the axial velocity fluctuation c1, it is
observed that a large amplitude chaotic motion occurs. Fig. 10 indicates that chaotic motion exists for the axially
accelerating moving viscoelastic beam when c1=1.0 m/s. Based on Figs. 6, 7, 9 and 10, it is found that a quasi-periodic
bifurcation given in Fig. 9 results in the chaotic motion. The largest Lyapunov exponents of the chaotic motion are
Fig. 17. The chaotic motion of system (23) exists when c1 ¼ 2:5m=s: (a) phase portrait and (b) Poincare map.

Fig. 18. The periodic-6 response of system (23) is obtained when c1 ¼ 2:89m=s: (a) phase portrait and (b) Poincare map.

Fig. 16. The periodic response of system (23) is depicted when c1 ¼ 2:37m=s: (a) phase portrait and (b) Poincare map.
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calculated, as shown in Fig. 7. It is seen from Fig. 7 that the largest Lyapunov exponents are positive. When the axial
velocity fluctuation changes to c1 ¼ 1:6 m=s, the chaotic motion disappears and a quasi-periodic motion appears, as shown
in Fig. 11.

Further increasing the axial velocity fluctuation c1 gives rise to a window of the periodic-2 motion for the nonplanar
nonlinear vibrations of the axially accelerating moving viscoelastic beam, as shown in Figs. 6 and 12. Within the interval
Fig. 19. The bifurcation diagrams for the two displacements v and w via the mean axial speed c0 are presented when we choose c1 ¼ 1m=s and o=15: (a)

bifurcation diagrams for the displacement w via c0 and (b) bifurcation diagrams for the displacement v via c0.

Fig. 20. Largest Lyapunov exponents via the c0 are calculated when c1 ¼ 1m=s.

Fig. 21. The periodic-2 motion of system (23) appears when c0 ¼ 17m=s: (a) phase portrait and (b) Poincare map.
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1.61rc1r2.23, there exists a very small window of the periodic-6 motion, as shown in Figs. 6 and 13. Fig. 14 illustrates
the existence of the periodic-2 motion.

The periodic-2 motion becomes the periodic nonlinear vibration with increasing the axial velocity fluctuation to
c1=2.28 and 2.37 m/s, as shown in Figs. 15 and 16. In this interval of the axial velocity fluctuation c1, the periodic motion
can suddenly become the large amplitude chaotic motion through the explosive bifurcation. It is observed that chaotic
motion and periodic motion alternatively appear and disappear, as shown in Figs. 6 and 7. This phenomenon of
the nonlinear vibrations is a typical intermittent chaos. When the axial velocity fluctuation c1 is located in the interval
[2.47, 3.5] m/s, a very large window of the chaotic motions appears for the nonplanar nonlinear vibrations of the axially
accelerating moving viscoelastic beam, as shown in Fig. 17. In addition, a very small window of the periodic-6 motion also
exists in this window of the chaotic motions, as shown in Fig. 18.
Fig. 22. The quasi-periodic motion of system (23) is depicted when c0=17.15 m/s: (a) phase portrait and (b) Poincare map.

Fig. 23. The chaotic motion of system (23) is depicted when c0 ¼ 19:4m=s: (a) phase portrait and (b) Poincare map.

Fig. 24. The periodic-2 response of system (23) is depicted when c0=19.5 m/s: (a) phase portrait and (b) Poincare map.



L.H. Chen et al. / Journal of Sound and Vibration 329 (2010) 5321–5345 5337
4.2.2. Effect of mean axial velocity

In the following analysis, we investigate the influence of the mean axial velocity on the nonlinear dynamic behaviors of the
axially accelerating moving viscoelastic beam. Fig. 19 presents the bifurcation diagrams for the two displacements v and w via the
mean axial speed c0 when we choose c1 ¼ 1m=s and o=15 Hz. The Lyapunov exponents are calculated for the nonplanar
nonlinear vibrations of the axially accelerating moving viscoelastic beam, as shown in Fig. 20. The Poincare maps and the phase
portraits are depicted to indicate the nonplanar nonlinear responses of the axially accelerating moving viscoelastic beam. The
observation obtained from Figs. 21–32 gives qualitative explanation of the various bifurcation phenomena.

When the mean axial velocity c0 is located in the interval [15 ,17.1]m/s, it is found from Fig. 19 that the in-plane motion
is the nonlinear periodic response and the out-of-plane motion is the periodic-2 response, as shown in Fig. 21. Fig. 22
illustrates the existence of the quasi-periodic motion when the mean axial velocity changes to c0=17.15 m/s. Increasing the
Fig. 25. The periodic-2 motion of system (23) is depicted when c0 ¼ 20m=s: (a) phase portrait and (b) Poincare map.

Fig. 26. The chaotic motion of system (23) appears when c0=20.5 m/s: (a) phase portrait and (b) Poincare map.

Fig. 27. The chaotic motion of system (23) is depicted when c0 ¼ 21:7m=s: (a) phase portrait and (b) Poincare map.
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mean axial velocity c0, the quasi-periodic bifurcation results in the chaotic motion of the axially accelerating moving
viscoelastic beam. Fig. 23 demonstrates that there exists the chaotic motion when c0=19.4 m/s. The largest Lyapunov
exponents of the chaotic motion are calculated and are positive. We also observe that the chaotic motion is interrupted by
a small window of the periodic-2 motion, as shown in Fig. 24, where c0=19.5 m/s.

Continuously increasing the mean axial velocity c0, it is found that the nonplanar nonlinear responses of the axially
accelerating moving viscoelastic beam become the periodic-2 motions. Fig. 25 indicates the existence of the periodic-2
motion when c0=20 m/s. In the interval 20 m/soc0r21.65 m/s of the mean axial velocity, there is a small window of the
chaotic motion, as shown in Fig. 26, where c0=20.5 m/s. As we further increase the mean axial velocity c0, it is observed
that the periodic motion suddenly becomes the large amplitude chaotic motion through the explosive bifurcation, as
shown in Figs. 19 and 20. Furthermore, the chaotic, periodic and quasi-periodic motions alternatively appear and
disappear, as shown in Figs. 27–29. When we continuously increase the mean axial velocity c0, a large window of the
Fig. 28. The periodic-2 response of system (23) is depicted when c0 ¼ 22:6m=s: (a) phase portrait and (b) Poincare map.

Fig. 29. The quasi-periodic motion of system (23) is depicted when c0 ¼ 24:85m=s: (a) phase portrait and (b) Poincare map.

Fig. 30. The periodic-10 motion of system (23) appears when c0 ¼ 25:2m=s: (a) phase portrait and (b) Poincare map.
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periodic motion appears, as shown in Figs. 19 and 20. Fig. 30 demonstrates the existence of periodic-10 motion for the
axially accelerating moving viscoelastic beam when c0=25.2 m/s. The periodic-6 motion exists when c0=27.1 m/s, as
shown in Fig. 31. Changing the mean axial velocity to c0=29.5 m/s, the periodic-2 motion appears, as shown in Fig. 32.
4.2.3. Effect of frequency of axial velocity fluctuation

We analyze the influence of the frequency of the axial velocity fluctuation on the nonlinear behaviors of the axially
accelerating moving viscoelastic beam. Fig. 33 gives the bifurcation diagrams for the two displacements v and w via the
Fig. 31. The periodic-6 response of system (23) is obtained when c0=27.1 m/s: (a) phase portrait and (b) Poincare map.

Fig. 32. The periodic-2 response of system (23) exists when c0 ¼ 29:5m=s: (a) phase portrait and (b) Poincare map.

Fig. 33. The bifurcation diagrams for the two displacements v and w via the frequency o of the axial velocity fluctuation are presented when c1 ¼ 1m=s

and c0 ¼ 20m=s: (a) bifurcation diagrams for the displacement w via o and (b) bifurcation diagrams for the displacement v via o.
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frequency o of the axial velocity fluctuation, where c1=1 m/s and c0=20 m/s. The Lyapunov exponents are calculated for
the nonplanar nonlinear vibrations of the axially accelerating moving viscoelastic beam, as shown in Fig. 34. The Poincare
maps and the phase portraits are depicted to illustrate the nonlinear dynamic behaviors of the axially accelerating moving
viscoelastic beam, as shown in Figs. 35–45.

When the frequency of the axial velocity fluctuation is located in the interval 15 Hzror32.9 Hz, there is a very large
window of the periodic motions including periodic-4 and periodic-2 motions, as shown in Figs. 35, 36 and 39, where the
Fig. 34. The largest Lyapunov exponents via the o are calculated when c1 ¼ 1m=s and c0 ¼ 20m=s.

Fig. 35. The periodic-4 response of system (23) is obtained when o=15.3 Hz: (a) phase portrait and (b) Poincare map.

Fig. 36. The periodic-2 response of system (23) is depicted when o=17.5 Hz: (a) phase portrait and (b) Poincare map.



Fig. 37. The chaotic motion of system (23) appears when o=21 Hz: (a) phase portrait and (b) Poincare map.

Fig. 38. The quasi-periodic motion of system (23) exists when o=21.6 Hz: (a) phase portrait and (b) Poincare map.

Fig. 39. The periodic-2 response of system (23) is depicted when o=25 Hz: (a) phase portrait and (b) Poincare map.
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frequencies of axial velocity fluctuation, respectively, are o=15.3, 17.5 and 25 Hz. In addition, there also exist some very
small windows of the chaotic motions, as shown in Figs. 37 and 40, where o=21 and 29.3 Hz. We also observe that there
exists a small window of the quasi-periodic motion for the axially accelerating moving viscoelastic beam, as shown in
Fig. 38, where o=21.6 Hz.

Continuously increasing the frequency o of the axial velocity fluctuation, a quasi-periodic bifurcation results in the
chaotic motion of the axially accelerating moving viscoelastic beam, as shown in Figs. 33 and 34. Figs. 41 and 42 illustrate
the existence of the quasi-periodic and chaotic motions when o=32.95 and 33.4 Hz, respectively. The largest Lyapunov
exponents of the chaotic motion are calculated and are positive. We also observe that the chaotic motion is interrupted by
some small windows of the periodic motion, as shown in Figs. 43–45.



Fig. 40. The chaotic motion of system (23) exists when o=29.3 Hz: (a) phase portrait and (b) Poincare map.

Fig. 41. The quasi-periodic motion of system (23) is depicted when o=32.95 Hz: (a) phase portrait and (b) Poincare map.

Fig. 42. The chaotic motion of system (23) appears when o=33.4 Hz: (a) phase portrait and (b) Poincare map.
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4.3. Contrast to in-plane transverse vibrations

In this subsection, we numerically investigate Eq. (24) to give a comparison of the dynamic responses of six-degrees-of-
freedom nonlinear system and those of three-degrees-of-freedom nonlinear system. To compare the difference between
the nonplanar nonlinear transverse vibrations and the in-plane nonlinear transverse vibrations of the axially accelerating
moving viscoelastic beam, we give the two bifurcation diagrams for the displacement v via the amplitude c1 of the axial
velocity fluctuation and the mean axial velocity c0, respectively, as shown in Figs. 46 and 47. In Figs. 46 and 47, we,
respectively, choose c0 ¼ 20 m=s and c1 ¼ 1 m=s. The other chosen parameters are same as those of the nonplanar
transverse nonlinear vibrations. The displacement on the midpoint of the beam, namely x=0.5 m, can be numerically
obtained from Eq. (24). Comparing Fig. 6 with Fig. 46 and Fig. 19 with Fig. 47, it is observed that the nonlinear dynamic



Fig. 43. The periodic-5 response of system (23) is depicted when o=33.5 Hz: (a) phase portrait and (b) Poincare map.

Fig. 44. The periodic-6 motion of system (23) exist when o=34.2 Hz: (a) phase portrait and (b) Poincare map.

Fig. 45. The periodic-2 response of system (23) is depicted when o=34.7 Hz: (a) phase portrait and (b) Poincare map.
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behaviors of the axially accelerating moving viscoelastic beam for the nonplanar nonlinear transverse vibrations are very
different from those of the in-plane nonlinear transverse vibrations.
5. Conclusion

In this paper, we study the bifurcations and chaotic motions for the nonplanar nonlinear transverse vibrations of an
axially accelerating moving viscoelastic beam which consists of viscoelastic materials and with the Kelvin–Voigt
constitutive relation. The generalized Hamilton’s principle is employed to establish the nonlinear governing equations of
the nonplanar transverse motion. The three-term Galerkin method is applied to truncating the governing equations to a



Fig. 46. The bifurcation diagram of system (24) for the displacement v via the amplitude of the axial velocity fluctuation c1 are presented when c0=20 m/s

and o=15 Hz.

Fig. 47. The bifurcation diagram of system (24) for the displacement v via the mean axial speed c0 are presented when we choose c1 ¼ 1m=s and

o=15 Hz.
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six-degrees-of-freedom nonlinear system and a three-degrees-of-freedom nonlinear system, which describe the nonplanar
transverse and the in-plane nonlinear vibrations of the axially accelerating moving viscoelastic beam, respectively. The
nonlinear dynamic behaviors are numerically investigated by means of the Poincare maps, the phase portraits and the
largest Lyapunov exponents. The bifurcation diagrams are depicted to demonstrate the changing trend for the two
displacements v and w via the amplitude c1 of the axial velocity fluctuation, the mean axial velocity c0 and the frequency o
of the axial velocity fluctuation, respectively.

For the axially accelerating moving viscoelastic beam with the square cross-sectional area or circular cross-sectional
area, two flexural stiffness coefficients of the in-plane and out-of-plane are same. It is observed that the nonlinear dynamic
responses for the in-plane and out-of-plane of the axially accelerating moving viscoelastic beam are completely uniform
when the motion of the system is the nonlinear periodic vibrations. In addition, when the motion of the system is the
quasi-periodic or chaotic vibrations, two nonlinear responses for the in-plane and out-of-plane also are same besides the
phase angle. The aforementioned phenomenon depends on the symmetry of the governing equations for the nonplanar
nonlinear transverse vibrations of six-degrees-of-freedom system.

When the axially accelerating moving viscoelastic beam with the rectangular cross-sectional area is considered, the
flexural stiffness coefficients of the in-plane and out-of-plane are not equal. It is seen that the motion of the in-plane is
different from that of the out-of-plane. In this case, the periodic, quasi-periodic and chaotic motions occur for the
nonplanar nonlinear transverse vibrations of the axially accelerating moving viscoelastic beam. Furthermore, it is observed
that with the increase of the mean axial velocity, the amplitudes of the nonlinear vibrations for the axially accelerating
moving viscoelastic beam also increase. In this case, the trajectory of the transverse motion for any point on the axially
accelerating moving viscoelastic beam is not in a plane.
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Comparing the bifurcation diagrams of the nonplanar and the in-plane nonlinear transverse vibrations, we can conclude
that the nonlinear dynamic responses of two types of systems with six-degrees-of-freedom and three-degrees-of-freedom
are very different although the structural and material parameters as well as the initial conditions are same.
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